CONTENTS

alex-levesque.com

ELEC 274 — Computer Architecture

WINTER 2026

Based on lectures by N. Manjikian — Queen’s University

Notes written by Alex Lévesque

These notes are my own interpretations of the course material and they are not endorsed by the lecturers.

Feel free to reach out if you point out any errors.

Contents

1 Preface 2

2 Assembly Guide 3
2.1 Data Movement & Memory Access 3
2.2 Arithmetic Operations 3
2.3 Control Flow (Branching) 4
2.4 Subroutines (Functions) 4

3 Basic Structure of Computers 6
4 Instruction Set Architecture 8
4.1 Memory Organization 8

http://alex-levesque.com

1 PREFACE

1 Preface

Grading Scheme:

Textbook:
Comments:

2 ASSEMBLY GUIDE

2 Assembly Guide

In Nios II, every instruction is 32 bits wide. Since memory addresses are assigned to
individual bytes (8 bits), we know that each instruction occupies a 4-byte block. Therefore,
in a routine, the starting address of the next instruction must be exactly 4 bytes higher
than the previous one.

In register transfer notation, use [...] to denote contents of a location. Use — to denote
transfer to a destination. Example: R2 +— [LOC]. We can also do R4 < [R2] + [R3]

2.1 Data Movement & Memory Access

These instructions are used to move data between registers or between registers and
memory

mov (move register): mov dest., src.

o Definition: copies the contents of one register into another register
o Purpose: Used when you need to duplicate a value that is currently in a register to
use it elsewhere without modifying the original

movi (move immediate): mov dest., IMM16

 Definition: Loads a 16-bit constant (immediate) value into a register. The value is
sign-extended to 32 bits.
o Purpose: Used to initialize a register with a small number (like 0, 1, or small offsets)

movia (move immediate address): mov dest., label/32-bit address

 Definition: A macro (pseudo-instruction) that loads a full 32-bit value (typically a
memory address) into a register

o Purpose: Since standard instructions can only handle 16-bit numbers at a time,
movia is essential for loading the addresses of labels so the program knows where
data is located in memory

1dw (load word): 1dw dest., byte_offset(base address)

o Definition: Reads a 32-bit word from a specific memory address and loads it into a
destination register
e Purpose: Used to retrieve data stored in RAM so the processor can operate on it

stw (store word): stw source, byte_offset(base address

e Definition: Writes the 32-bit value currently in a register to a specific memory
address
o Purpose: Used to save the results of calculations back into RAM for later use

Byte offsets are used to provide a flexible and efficient way to access specific memory
locations relative to a known starting point

2.2 Arithmetic Operations
These instructions perform mathematical calculations.

add (add): add dest., src., src.

2 ASSEMBLY GUIDE

o Definition: adds the contents of two source registers together and stores the result
in a destination register
o Purpose: Used for standard addition of variables

addi (add immediate): addi dest., src., IMM16

e Definition: adds the value of a source and a 16-bit constant, storing the result in
the destination

e Purpose: commonly used to increment counters or move points to the next item in
a list

subi (subtract immediate): subi dest., src., IMM16

e Definition: Subtracts a 16-bit constant value from source and stores the result in
the destination
o Purpose: used to decrement counters or adjust values downwards by a fixed amount

2.3 Control Flow (Branching)

These instructions change the order in which the code executes (loops and if-statements).
Branch instruction causes repetition of body. Many branches are conditional, as seen
below.

br (branch): br LABEL

o Definition: unconditionally jumps to the instruction located at LABEL
o Purpose: used to force a loop to repeat or to skip over a section of code entirely

beq (branch if equal): beq src., src., LABEL

o Definition: compares registers; if they are equal, the program jumps to LABEL
o Purpose: often used to check loop termination conditions

bne (branch if not equal): bne src., src., LABEL
bge, ble, bgt, blt (branch if > < > <): opcode src., src., LABEL

 Definition: compares registers; if they are >, <, >, <, the program jumps to LABEL
o Purpose: often used to check loop termination conditions

2.4 Subroutines (Functions)

These instructions are used to call and return from functions
call (call subroutine): call LABEL

o Definition: jumps to LABEL and automatically saves the address of the next
instruction into the return address register r31

o Purpose: allows the program to execute a separate block of code and remember
where to come back to when it’s done

ret (return):

o Definition: jumps to the address stored in the return address register
o Purpose: used at the end of function to send the processor back to the point in the
main code immediately following the call instructions

2 ASSEMBLY GUIDE

Begin execution here —=

Address

i
i+4
1+8

i+ 12

Contents
Load R2,A
Load R3.B 4-instruction
> program
Add R4.R2,R3 segment
Store R4.C
‘_
Data for

the program

3 BASIC STRUCTURE OF COMPUTERS

3 Basic Structure of Computers

Definition: Computer architecture is the specification of a set of instructions and
behaviour of hardware units

Functional Units: Computers consist of 5 basic units: input, memory, arithmetic and
logic, output, and control. The interconnection network supports transfer of information
between units. The processor includes arithmetic and logic with control. The I/O
System includes input and output units together.

Memory
Arithmetic
Input and
logic
Interconnection
network
Output Control
/0 Processor

Input: Accepts coded information (in binary) for processing. Ex: mouse, keyboard, etc.
Memory: Stores programs (instruction lists) and data. Ex: RAM, SSD/HDD, cache

ALU: Performs arithmetic (+, —, -, /) and logic (A, V,—). Ex: high-speed registers for
holding operands

Output: Presents processed results. Ex: displays, printers, and audio devices

Control: Coordinates all other units by sending timing and state signals. Ex: control
circuits and control lines

3 BASIC STRUCTURE OF COMPUTERS

Main memory

\/

Processor-memory interface

pPC R,
Control

=—— Processor

IR

ALU

R|'|—l

n general purpose
registers

17

How They Interact

1.

Instruction Fetching: The Control Unit uses the Program Counter (PC) to
find the address of the next instruction in Memory. This instruction is moved into
the Instruction Register (IR) within the processor. During execution of each
instruction, PC register is incremented by 4.

Decoding: The Control Unit interprets (decodes) the instruction in the IR to
determine what action is required.

Data Transfer: Depending on the instruction, data may be moved from an Input
Unit to Memory, or from Memory to Processor Registers (Load instruction).
Processing: If the instruction involves math or logic, the Control Unit directs the
ALU to perform the operation using operands stored in registers.

Storing and Outputting: The result of a calculation is either kept in a register
or written back to Memory (Store instruction). Finally, the Output Unit may
transfer these results to a user or external device.

Instructions Running Cycle:

1.

Fetch: The CPU fetches the instructions from memory. It uses the PC to know the
memory address of the next instruction which is then loaded into the IR

Execute: The CPU carries out what the instruction says, could be ALU, jump/branch,
moving data, etc.

4 INSTRUCTION SET ARCHITECTURE

4 Instruction Set Architecture

A common word length is 32 bits. Numbers 0 to 2¥ — 1 are used as addresses for successive
locations in the memory. Byte size is always 8 bits, but word length may range from 16
to 64 bits.

Byte locations have addresses 0, 1, 2, .. ., and word locations have addresses 0,4,8,.... We
provide a byte-addressable memory that assigns an address to each byte. We have two
ways to assign byte address across words.

Big-endian: Assigns lower addresses to more significant (leftmost) bytes of word

Little-endian: Uses opposite order.

Word
address Byte address Byte address
0 0 1 2 3 0 3 2 1 0
4 4 5 6 7 4 7 6 5 4
ofa | 2foa | 2o | 2f 2| 2 ARV [P LN LN AN [

(a) Big-endian assignment (b) Little-endian assignment

4.1 Memory Organization
Hierarchy and Storage Types
Memory is organized into different levels to balance speed, capacity, and cost.

Primary Memory: This is fast, electronic memory composed of semiconductor storage
cells. It is essential for storing programs and data currently in use.

Cache Memory: A smaller, faster electronic memory located on the same chip as the
processor. It holds copies of instructions and data from the main memory that were
recently used or are likely to be used soon, significantly speeding up access.

Secondary Storage: This provides large-capacity storage that retains information even
when the power if off. While it is less expensive per bit, i tis generally slower than primary
memory and has traditionally been based on magnetic or optical devices, though it now
includes flash memory.

4 INSTRUCTION SET ARCHITECTURE

Physical and Logical Organization
The physical structure of memory dictates how the processor interacts with it.

« Binary Representation: Information is stored in bits

« Words: Bits are grouped into multi-bit “words” (typically 32 bits) to allow the
processor to access multiple bits simultaneously for efficiency

o Addressing: Each word location has a unique address, numbered consecutively
starting at 0

o Random Access Memory: Memory is organized so that any location can be accessed
in a fixed, short amount of time, regardless of where the data is physically located

	Preface
	Assembly Guide
	Data Movement & Memory Access
	Arithmetic Operations
	Control Flow (Branching)
	Subroutines (Functions)

	Basic Structure of Computers
	Instruction Set Architecture
	Memory Organization

